A Planetary
Risk
The Perils of Nuclear-Powered Space Flights
NASA has released a study
claiming there is a need for continued use of plutonium-energized power systems
for future space flights. It also says the use of actual nuclear reactors in
space “has promise” but “currently” there is no need for them.
The space plutonium systems—called radioisotope thermoelectric generators (RTGS)—use the heat from the decay of plutonium to generate electricity in contrast to nuclear reactors, usually using uranium, in which fission or atom-splitting takes place.
The “Nuclear Power Assessment Study” describes itself as being done as a “collaboration” involving “NASA centers,” among them Johnson Space Center, Kennedy Space Center and the Jet Propulsion Laboratory, “the Department of Energy and its laboratories including Los Alamos National Laboratory, Idaho National Laboratory, Sandia National Laboratories,” and the Johns Hopkins University Applied Physics Laboratory.
The study, released this month, comes as major breakthroughs have been happening in the use of solar and other benign sources of power in space. The situation parallels that on Earth as solar and wind power and other clean, safe technologies compete with nuclear, oil, coal and other problematic energy sources and the interests behind them.
Examples of the use of benign power in space include the successful flight in May of a solar-powered spacecraft named LightSail in a mission funded by members of the Planetary Society. Astronomer Carl Sagan, a founder of the society, was among those who have postulating having a spacecraft with a sail propelled through the vacuum of space by the pressure of photons emitted by the sun. LightSail demonstrates his vision.
Yet, meanwhile, NASA cancelled its own solar sail mission scheduled for this year. It was to involve the largest solar sail ever flown. In 2010, the Japan Aerospace Exploration Agency made the first solar sail flight with a spacecraft it named Ikaros. Before the NASA solar flight cancellation, NASA last year declared on its website: “The concept of a huge, ultra-thin sail unfurling in space, using the pressure of sunlight to provide propellant-free transport, hovering and exploration capabilities, may seem like the stuff of science fiction. Now a NASA team developing the ‘In-Space Demonstration of a Mission-Capable Solar Sail’—or Solar Sail Demonstrator for short—intend[s] to prove the viability and value of the technology in the years to come.” NASA said the mission, also called Sunjammer, was cancelled by NASA because of problems ” with the project’s contractor, L’Garde of California.
And also, meanwhile, demonstrating that solar power can be harvested far out in space, the Rosetta space probe of the European Space Agency (ESA), energized with solar power, successfully rendezvoused last year with a comet 375 million miles from the sun. ESA at the start of this mission explained that it did not have the plutonium power systems that NASA had, so instead it developed high-efficiency solar photovoltaic panels for use in space. And they worked enabling Rosetta to meet up with Comet 67P/Churyumov-Gerasimenko and send a lander to its surface. Rosetta continues flying alongside the comet.
NASA, too, has a space probe energized with high-efficiency solar photovoltaic panels it developed now on its way to Jupiter in a mission it has named Juno. For decades, NASA insisted that solar power could not be harvested beyond the orbit of Mars and thus plutonium power systems were necessary. This was NASA’s central argument in federal court in 1989 to rebut opponents of its plutonium-energized Galileo mission to Jupiter. Now it has shown it was mistaken. Juno using solar power instead of plutonium RTGs is to reach Jupiter next year.
NASA Administrator Charles Bolden, a former astronaut and Marine Corps major general, remains a big booster of using nuclear-propelled rockets to get to Mars. Work on such a rocket has been going on at NASA’s Marshall Space Flight Center. NASA on its website says that a nuclear-powered rocket “could propel human explorers to Mars more efficiently than conventional spacecraft.”
Through the years, NASA has worked closely with the U.S. Atomic Energy Commission and after the commission was disbanded its successor, the Department of Energy, on space nuclear programs. And there’s a program at DOE’s Los Alamos National Laboratory to develop a “robust fission reactor prototype that could be used as a power system for space travel,” according to Technews World.
This is occurring despite Russia now abandoning its development of nuclear-propelled rockets for missions to Mars, a project it had earlier much-heralded. Reported TASS in April:
“Over the years, inside the DOE labs, hundreds of workers have been contaminated while fabricating space nuclear devices. It is not just some theoretical chance of a space launch accident that we are concerned about. We oppose the entire space nuclear power production process,” he said. “It’s all dangerous!”
“Just like here on Earth there is a tug-of-war going on between those who wish to promote life-giving solar power and those who want nukes,” said Gagnon. “That same battle for nuclear domination is being taken into the heavens by an industry that wants more profit—no matter the consequences. The Global Network will continue to organize around the space nuclear power issue by building a global constituency opposed to the risky and unnecessary nukes in space program.” The Global Network is based in Maine.
The new “Nuclear Power Assessment Study” opens by stating: “Human missions to deep-space locations such as extended missions on the lunar and Martian surfaces have always been recognized as requiring some form of nuclear power.” As of now, “nuclear power systems are expected to be required well into the 2030s at the least.”
It says using actual reactors in space “could potentially enable higher power,” but it suggests they be pursued “only if the future need arises and sufficient new funds to develop an FPS [fission power system] flight unit are provided.” It goes on, “Perhaps the largest uncertainty is the cost and schedule for developing a compact FPS for space flight. Only one U.S. reactor has been flown—the SNAP-10A reactor” which powered a satellite launched in 1965. That satellite, with its nuclear reactor onboard, remains1,000 miles overhead in what the study calls a “‘nuclear-safe’ orbit, although debris-shedding events of some level may have occurred.”
The study notes that the “United States has spent billions of dollars on space reactor programs, which have resulted in only one flight” and it says “examinations” of the many “terminated” space nuclear power “efforts have revealed that materials issues and technology challenges produced common pitfalls.”
Still, the study is high in praise of the U.S. space nuclear power program. “Nuclear systems have enabled tremendous strides in our country’s exploration and use of space since 1961.” It speaks of nuclear power being used “to support 31 missions that range from navigational, meteorological, communications and experimental satellites.”
“The launch and use of space nuclear power systems presents unique safety challenges,” it continues. “These safety challenges, or issues, must be recognized and addressed in the design of each space nuclear power system, including consideration of potential accident conditions.”
“Launch and safe flight involve risk of failures or accidents” and “the most critical periods include launch, ascent, and orbital or trajectory insertion.”
“Three accidents involving U.S. space nuclear power systems have occurred [and] all three involved the launch vehicle or transfer stage, and were unrelated to the power system,” the study says. “In each case, the nuclear systems responded as designed and there were no hazardous consequences.”
That claim of no hazardous consequences is not true, as the late Dr. John Gofman, professor at the University of California at Berkeley, long maintained. Of the three U.S. space nuclear accidents, the most serious was the fall back to Earth in 1964 of a satellite with a SNAP-9A plutonium system onboard. The satellite and plutonium system disintegrated in the fall, the plutonium was dispersed worldwide and caused, in Dr. Gofman’s estimation, an increase in the global lung cancer rate. Dr. Gofman, an M.D. and Ph.D., co-discoverer of several radioisotopes, and was a pioneer in the earliest experiments with plutonium.
A 10 percent failure rate in space nuclear power missions has also been the case for Russia and, before it, the Soviet Union. The worst Soviet space nuclear accident occurred in the fall in 1978 of Cosmos satellite 954, with an atomic reactor onboard, which disintegrated as it plummeted to Earth, spreading nuclear debris for hundreds of miles across the Northwest Territories of Canada.
Despite the study’s rosy history of space nuclear power, it also says “it may be prudent to build in more time in the development of schedule for the first launch of a new space reactor. Public interest would likely be large, and it is possible that opposition could be substantial.”
Officials were warning people that “potentially hazardous debris could wash ashore.”
Consider if a radioisotope thermoelectric generator was onboard and plutonium was also dispersed. Consider if there were a nuclear reactor onboard or an atomic propulsion system and an array of radioactive poisons contained in the debris.
U.S. Representative Donna Edwards of Maryland, a member of the House Science, Space & Technology Committee, announced that “the launch failure this morning shows us once again that space is difficult—it requires near perfection.”
Inserting nuclear poisons into a danger-prone equation that “requires near perfectioin”—especially when it is unnecessary—is reckless, the consequences potentially devastating.
Estimates in NASA’s Final Environmental Impact Statement, for instance, of the cost of plutonium decontamination if there were an accident when the Curiosity rover was launched in 2011 to Mars were put at $267 million for each square mile of farmland, $478 million for each square mile of forests and $1.5 billion for each square mile of “mixed-use urban areas.” It was powered with a plutonium-energized RTG, although previously NASA Mars rovers were able to function well with solar power.
When the Cassini space probe was sent off to Saturn in 1997—with three RTGs containing 72.3 pounds of Plutonium-238, the most plutonium ever used on a spacecraft—NASA in its Final Environmental Impact Statement said that if an “inadvertent reentry” of Cassini occurred causing it to disintegrate and release its plutonium, “5 billion…of the world’s population…could receive 99 percent or more of the radiation exposure.”
Noting that “technology frequently goes wrong,” Gagnon of the Global Network Against
Weapons & Nuclear Power in Space, says: “When you consider adding nuclear power into the mix it becomes an explosive combination. We’ve long been sounding the alarm that nuclear
power in space is not something the public nor the planet can afford to take a chance on.”
~ Karl Grossman, professor of journalism at the State University of New York/College of New York, is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.
The space plutonium systems—called radioisotope thermoelectric generators (RTGS)—use the heat from the decay of plutonium to generate electricity in contrast to nuclear reactors, usually using uranium, in which fission or atom-splitting takes place.
The “Nuclear Power Assessment Study” describes itself as being done as a “collaboration” involving “NASA centers,” among them Johnson Space Center, Kennedy Space Center and the Jet Propulsion Laboratory, “the Department of Energy and its laboratories including Los Alamos National Laboratory, Idaho National Laboratory, Sandia National Laboratories,” and the Johns Hopkins University Applied Physics Laboratory.
The study, released this month, comes as major breakthroughs have been happening in the use of solar and other benign sources of power in space. The situation parallels that on Earth as solar and wind power and other clean, safe technologies compete with nuclear, oil, coal and other problematic energy sources and the interests behind them.
Examples of the use of benign power in space include the successful flight in May of a solar-powered spacecraft named LightSail in a mission funded by members of the Planetary Society. Astronomer Carl Sagan, a founder of the society, was among those who have postulating having a spacecraft with a sail propelled through the vacuum of space by the pressure of photons emitted by the sun. LightSail demonstrates his vision.
Yet, meanwhile, NASA cancelled its own solar sail mission scheduled for this year. It was to involve the largest solar sail ever flown. In 2010, the Japan Aerospace Exploration Agency made the first solar sail flight with a spacecraft it named Ikaros. Before the NASA solar flight cancellation, NASA last year declared on its website: “The concept of a huge, ultra-thin sail unfurling in space, using the pressure of sunlight to provide propellant-free transport, hovering and exploration capabilities, may seem like the stuff of science fiction. Now a NASA team developing the ‘In-Space Demonstration of a Mission-Capable Solar Sail’—or Solar Sail Demonstrator for short—intend[s] to prove the viability and value of the technology in the years to come.” NASA said the mission, also called Sunjammer, was cancelled by NASA because of problems ” with the project’s contractor, L’Garde of California.
And also, meanwhile, demonstrating that solar power can be harvested far out in space, the Rosetta space probe of the European Space Agency (ESA), energized with solar power, successfully rendezvoused last year with a comet 375 million miles from the sun. ESA at the start of this mission explained that it did not have the plutonium power systems that NASA had, so instead it developed high-efficiency solar photovoltaic panels for use in space. And they worked enabling Rosetta to meet up with Comet 67P/Churyumov-Gerasimenko and send a lander to its surface. Rosetta continues flying alongside the comet.
NASA, too, has a space probe energized with high-efficiency solar photovoltaic panels it developed now on its way to Jupiter in a mission it has named Juno. For decades, NASA insisted that solar power could not be harvested beyond the orbit of Mars and thus plutonium power systems were necessary. This was NASA’s central argument in federal court in 1989 to rebut opponents of its plutonium-energized Galileo mission to Jupiter. Now it has shown it was mistaken. Juno using solar power instead of plutonium RTGs is to reach Jupiter next year.
NASA Administrator Charles Bolden, a former astronaut and Marine Corps major general, remains a big booster of using nuclear-propelled rockets to get to Mars. Work on such a rocket has been going on at NASA’s Marshall Space Flight Center. NASA on its website says that a nuclear-powered rocket “could propel human explorers to Mars more efficiently than conventional spacecraft.”
Through the years, NASA has worked closely with the U.S. Atomic Energy Commission and after the commission was disbanded its successor, the Department of Energy, on space nuclear programs. And there’s a program at DOE’s Los Alamos National Laboratory to develop a “robust fission reactor prototype that could be used as a power system for space travel,” according to Technews World.
This is occurring despite Russia now abandoning its development of nuclear-propelled rockets for missions to Mars, a project it had earlier much-heralded. Reported TASS in April:
“Russia’s space agency Roscosmos is planning to shut down works on developing a megawatt-class nuclear propulsion system for long-range manned spacecraft.”But the DOE has resumed production for NASA of the isotope of plutonium—Plutonium-238—used in RTGs. It is a form of plutonium 280 times more radioactive than the plutonium used as a fuel in atomic bombs, Plutonium-239. Reported the journal Nature:
“NASA will be relieved to get this 238 Pu [Plutonium] because it is increasingly anxious about running out. The isotosope is not found in nature, so it has to be made in nuclear reactors…NASA now has just 35 kilograms of plutonium product—a small supply that may not match the demands to send missions to Mars, the moons of Jupiter and beyond.” The restart of Plutonium-238 production involves the DOE’s Idaho National Laboratory, Oak Ridge National Laboratory and Los Alamos National Laboratory. 1“We’ve known for years that the nuclear industry has taken control of the seats at the NASA and DOE planning committees that decide whether solar or nuclear power should be used on space missions,” said Bruce Gagnon, coordinator of the Global Network Against Weapons & Nuclear Power in Space. “The nuclear industry views space as a new market for their deadly product. Nuclear generators on space missions, nuclear powered mining colonies on Mars and other planetary bodies and even nuclear reactors on rockets to Mars are being sought. Thus there are many opportunities for things to go wrong.”
“Over the years, inside the DOE labs, hundreds of workers have been contaminated while fabricating space nuclear devices. It is not just some theoretical chance of a space launch accident that we are concerned about. We oppose the entire space nuclear power production process,” he said. “It’s all dangerous!”
“Just like here on Earth there is a tug-of-war going on between those who wish to promote life-giving solar power and those who want nukes,” said Gagnon. “That same battle for nuclear domination is being taken into the heavens by an industry that wants more profit—no matter the consequences. The Global Network will continue to organize around the space nuclear power issue by building a global constituency opposed to the risky and unnecessary nukes in space program.” The Global Network is based in Maine.
The new “Nuclear Power Assessment Study” opens by stating: “Human missions to deep-space locations such as extended missions on the lunar and Martian surfaces have always been recognized as requiring some form of nuclear power.” As of now, “nuclear power systems are expected to be required well into the 2030s at the least.”
It says using actual reactors in space “could potentially enable higher power,” but it suggests they be pursued “only if the future need arises and sufficient new funds to develop an FPS [fission power system] flight unit are provided.” It goes on, “Perhaps the largest uncertainty is the cost and schedule for developing a compact FPS for space flight. Only one U.S. reactor has been flown—the SNAP-10A reactor” which powered a satellite launched in 1965. That satellite, with its nuclear reactor onboard, remains1,000 miles overhead in what the study calls a “‘nuclear-safe’ orbit, although debris-shedding events of some level may have occurred.”
The study notes that the “United States has spent billions of dollars on space reactor programs, which have resulted in only one flight” and it says “examinations” of the many “terminated” space nuclear power “efforts have revealed that materials issues and technology challenges produced common pitfalls.”
Still, the study is high in praise of the U.S. space nuclear power program. “Nuclear systems have enabled tremendous strides in our country’s exploration and use of space since 1961.” It speaks of nuclear power being used “to support 31 missions that range from navigational, meteorological, communications and experimental satellites.”
“The launch and use of space nuclear power systems presents unique safety challenges,” it continues. “These safety challenges, or issues, must be recognized and addressed in the design of each space nuclear power system, including consideration of potential accident conditions.”
“Launch and safe flight involve risk of failures or accidents” and “the most critical periods include launch, ascent, and orbital or trajectory insertion.”
“Three accidents involving U.S. space nuclear power systems have occurred [and] all three involved the launch vehicle or transfer stage, and were unrelated to the power system,” the study says. “In each case, the nuclear systems responded as designed and there were no hazardous consequences.”
That claim of no hazardous consequences is not true, as the late Dr. John Gofman, professor at the University of California at Berkeley, long maintained. Of the three U.S. space nuclear accidents, the most serious was the fall back to Earth in 1964 of a satellite with a SNAP-9A plutonium system onboard. The satellite and plutonium system disintegrated in the fall, the plutonium was dispersed worldwide and caused, in Dr. Gofman’s estimation, an increase in the global lung cancer rate. Dr. Gofman, an M.D. and Ph.D., co-discoverer of several radioisotopes, and was a pioneer in the earliest experiments with plutonium.
A 10 percent failure rate in space nuclear power missions has also been the case for Russia and, before it, the Soviet Union. The worst Soviet space nuclear accident occurred in the fall in 1978 of Cosmos satellite 954, with an atomic reactor onboard, which disintegrated as it plummeted to Earth, spreading nuclear debris for hundreds of miles across the Northwest Territories of Canada.
Despite the study’s rosy history of space nuclear power, it also says “it may be prudent to build in more time in the development of schedule for the first launch of a new space reactor. Public interest would likely be large, and it is possible that opposition could be substantial.”
***
The explosion after launch Sunday from the Kennedy Space Center in Florida of
a SpaceX Falcon 9 rocket on a mission to deliver supplies to the International
Space Station was an event again underlining the danger of using nuclear power
on spacecraft.Officials were warning people that “potentially hazardous debris could wash ashore.”
Consider if a radioisotope thermoelectric generator was onboard and plutonium was also dispersed. Consider if there were a nuclear reactor onboard or an atomic propulsion system and an array of radioactive poisons contained in the debris.
U.S. Representative Donna Edwards of Maryland, a member of the House Science, Space & Technology Committee, announced that “the launch failure this morning shows us once again that space is difficult—it requires near perfection.”
Inserting nuclear poisons into a danger-prone equation that “requires near perfectioin”—especially when it is unnecessary—is reckless, the consequences potentially devastating.
Estimates in NASA’s Final Environmental Impact Statement, for instance, of the cost of plutonium decontamination if there were an accident when the Curiosity rover was launched in 2011 to Mars were put at $267 million for each square mile of farmland, $478 million for each square mile of forests and $1.5 billion for each square mile of “mixed-use urban areas.” It was powered with a plutonium-energized RTG, although previously NASA Mars rovers were able to function well with solar power.
When the Cassini space probe was sent off to Saturn in 1997—with three RTGs containing 72.3 pounds of Plutonium-238, the most plutonium ever used on a spacecraft—NASA in its Final Environmental Impact Statement said that if an “inadvertent reentry” of Cassini occurred causing it to disintegrate and release its plutonium, “5 billion…of the world’s population…could receive 99 percent or more of the radiation exposure.”
Noting that “technology frequently goes wrong,” Gagnon of the Global Network Against
Weapons & Nuclear Power in Space, says: “When you consider adding nuclear power into the mix it becomes an explosive combination. We’ve long been sounding the alarm that nuclear
power in space is not something the public nor the planet can afford to take a chance on.”
~ Karl Grossman, professor of journalism at the State University of New York/College of New York, is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.
Global
Network Against Weapons & Nuclear Power in Space
PO Box 652
Brunswick, ME 04011
(207) 443-9502
http://www.space4peace.org
http://space4peace.blogspot.com (blog)
Thank God men cannot fly, and lay waste the sky as well as the earth. - Henry David Thoreau
PO Box 652
Brunswick, ME 04011
(207) 443-9502
http://www.space4peace.org
http://space4peace.blogspot.com (blog)
Thank God men cannot fly, and lay waste the sky as well as the earth. - Henry David Thoreau